PRELIMINARY NOTE

Novel organosilicon- and organotin-substituted polychloromethyllithium reagents: $(CH_3)_3SiCCl_2Li$ and $(CH_3)_3SnCCl_2Li$

Much effort has been devoted in recent years to the preparation and synthetic utilization of polyhalomethyllithium reagents such as CCl₃Li¹, CHCl₂Li², PhCCl₂Li^{1b}, etc. Our interest in polyhalomethyl derivatives of silicon and tin³⁻⁶ has led us to prepare trimethylsilyldichloromethyllithium and trimethyltindichloromethyllithium by the procedures shown in eqns. 1 and 2. These reactions were carried out in a

....

$$Me_{3}SiCCl_{2}H + PhLi \xrightarrow{-125^{\circ}} Me_{3}SiCCl_{2}Li + C_{6}H_{6}$$
(1)

$$Me_{3}SnCCl_{2}SnMe_{3} + n-BuLi \xrightarrow{-130^{-1}} Me_{3}SnCCl_{2}Li + n-BuSnMe_{3}$$
(2)

standard solvent mixture of three parts THF, and one part each of diethyl ether, methylal and pentane⁷, and they proceeded in high yield. The reaction of trimethyl-(dichloromethyl)tin* with n-butyl- or tert-butyllithium resulted in nucleophilic attack at tin with displacement of the dichloromethyl group, rather than in proton abstraction as in the case of trimethyl(dichloromethyl)silane**. The availability of bis(trimethyltin)dichloromethane⁹ and the ready displacement of electronegative organic substituents from tin by alkyllithiums, however, made possible the high yield synthesis of Me₃SnCCl₂Li as shown in eqn. 2.

Both of these novel organolithium reagents undergo usual RLi reactions, but in both cases interesting complications were encountered. The reaction of trimethylsilyldichloromethyllithium with methyl iodide gave the expected Me₃SiCCl₂-Me, m.p. 117–119°, in 77% yield, but a by-product in 11% yield was Me₃SiCCl₂SiMe₃, n_D^{25} 1.4667. Similarly, in the reaction of Me₃SiCCl₂Li with trimethyltin chloride, which gave Me₃SiCCl₂SnMe₃, a liquid, b.p. 84°/10 mm, n_D^{25} 1.4992, in 70% yield, two by-products, Me₃SiCCl₂SiMe₃ (17%, based on available Me₃Si groups) and Me₃SnCCl₂H (10%), were formed. This by-product formation is explicable as shown in eqns. 3 and 4. Further support for this explanation was given by independent observation of the process indicated by eqn. 3.

$$Me_{3}SiCCl_{2}Li + Me_{3}SiCCl_{2}H \rightarrow Me_{3}SiCCl_{2}SiMe_{3} + LiCHCl_{2}$$
(3)

$$LiCHCl_2 + Me_3SnCl \rightarrow Me_3SnCCl_2H + LiCl$$
(4)

J. Organometal. Chem., 10 (1967) P25-P27

^{*} A liquid, b.p. $86-87^{\circ}/38$ mm, prepared in 66% yield by the reaction of dichloromethyllithium and trimethyltin chloride. NMR : singlets at 0.3 ppm (9 H) and 5.4 ppm (1 H) downfield from TMS, with the expected side bands due to Sn-C-H spin-spin coupling.

^{}** This provides still another example of the difference in behavior between silicon and tin compounds toward organolithium reagents, *i.e.*, attack at tin in the organotin compound and at other sites in the molecule in the corresponding silane. Note, for instance, the action of phenyllithium on the vinyltriphenyl derivatives of silicon, germanium and tin⁸.

The bromination of trimethylsilyldichloromethyllithium gave only a 7% yield of trimethyl (bromodichloromethyl) silane, m.p. 152–153°, together with a 45% yield of Me₃SiCCl₂SiMe₃, when bromine was added to the lithium reagent solution at -125° . However, addition of the Me₃SiCCl₂Li solution to a fivefold excess of bromine in ether resulted in the formation of Me₃SiCCl₂Br in 45% yield, and only a 5% by-product yield was noted. In this case it would seem that an added complication is that as yet unconverted Me₃SiCCl₂Li is capable of reacting with the Me₃SiCCl₂Br produced to give Me₃SiCCl₂SiMe₃ by displacement of the CCl₂Br group from silicon.

Competing reactions of the organolithium reagent with substrate and product also complicated the preparative utilization of trimethyltindichloromethyllithium. The reaction mixture obtained by quenching the reagent prepared from 10.2 mmoles of bis(trimethyltin)dichloromethane and 11.9 mmoles of n-butyllithium with trimethylchlorosilane (12.4 mmoles) was found via GLPC to contain n-butyltrimethyltin (91%), Me₃SiCCl₂SiMe₃ (19%), Me₃SiCCl₂SnMe₃ (36%) and Me₃SnCCl₂SnMe₃ (35%). At first sight, the nearly quantitative yield of n-butyltrimethyltin and the 35% recovery of Me₃SnCCl₂SnMe₃ are in mutual contradiction. However, the reaction sequence below, which follows eqn. 2, the generation of Me₃SnCCl₂Li and n-butyltrimethyltin in 91% yield, explains the results obtained:

$$Me_{3}SnCCl_{2}Li + Me_{3}SiCl \rightarrow Me_{3}SiCCl_{2}SnMe_{3} + LiCl$$
(5)

$$Me_{3}SiCCl_{2}SnMe_{3} + Me_{3}SnCCl_{2}Li \rightarrow Me_{3}SnCCl_{2}SnMe_{3} + Me_{3}SiCCl_{2}Li$$
(6)

$$Me_{3}SiCCl_{2}Li + Me_{3}SiCl \rightarrow Me_{3}SiCCl_{2}SiMe_{3} + LiCl$$
(7)

Thus the Me₃SnCCl₂SnMe₃ recovered does not represent unconverted starting material and is instead the product of the reaction sequence (1)–(5)–(6). Similarly, quenching of the reagent from the n-BuLi⁺Me₃SnCCl₂SnMe₃ reaction with methyl iodide gave a mixture of n-butyltrimethyltin (78%), Me₃SnCCl₂SnMe₃ (37%) and the expected product, Me₃SnCCl₂Me (26%)*. Hydrolysis of Me₃SnCCl₂Li with 1.0 N HCl at -120° resulted in formation of trimethyl(dichloromethyl)tin in 54% yield.

In spite of these complications due to the relatively easily achieved displacement of polychlorinated substituents from silicon and tin by organolithium reagents, trimethylsilyl- and trimethyltindichloromethyllithium are useful reagents which make possible the preparation of novel chlorinated organosilicon and organotin compounds. Further work concerned with the preparative application of these reagents is in progress, and full details will be reported at a later date. Satisfactory analytical data were obtained for all the new compounds mentioned in this communication.

Acknowledgments

The authors are grateful to the U.S. Army Research Office (Durham) for generous support of this work and to M &T Chemicals, Inc. for gifts of chemicals.

J. Organometal. Chem., 10 (1967) P25-P27

^{*} An authentic sample of trimethyl(1,1-dichlorocthyl)tin, m.p. 58-59°, was prepared in 47% yield by the reaction of trimethyltin chloride with MeCCl₂Li (prepared by reaction of n-butyllithium with 1,1-dichloroethane in the standard solvent mixture at -115°). NMR: singlets at 0.30 ppm [9 H; $J(^{117}Sn^{-1}H)$ 53 cps; $J(^{119}Sn^{-1}H)$ 55 cps] and 2.17 ppm [3 H; J(Sn-H) 35 cps].

This investigation was supported in part by Public Health Service Fellowships 5-F1-GM-23,742 (to F.M.A.) and 5-F1-GM-28,934 (to E.M.H.).

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Mass., 02139 (U.S.A.) Dietmar Seyferth Frank M. Armbrecht, Jr. Earle Marie Hanson

- (a) W. T. MILLER, JR. AND D. M. WHALEN, J. Am. Chem. Soc., 86 (1964) 2089; (b) D. F. HOEG, D. I. LUSK AND A. L. CRUMBLISS, J. Am. Chem. Soc., 87 (1965) 4147; (c) G. KÖBRICH, K. FLORY AND R. H. FISCHER, Chem. Ber., 99 (1966) 1793.
- 2 G. KÖBRICH AND H. R. MERKLE, Chem. Ber., 99 (1966) 1782.
- 3 D. SEYFERTH, J. Y.-P. MUI, M. E. GORDON AND J. M. BURLITCH, J. Am. Chem. Soc., 87 (1965) 681.
- 4 D. SEYFERTH, H. DERTOUZOS, R. SUZUKI AND J. Y.-P. MUI, J. Org. Chem., 32 (1967) in press.
- 5 D. SEYFERTH, F. M. ARMBRECHT, JR., B. PROKAI AND R. J. CROSS, J. Organometal. Chem., 6 (1966) 573.
- 6 D. SEYFERTH, J. M. BURLITCH, H. DERTOUZOS AND H. D. SIMMONS, JR., J. Organometal. Chem., 7 (1967) 405.
- 7 M. SCHLOSSER AND V. LADENBERG, Angew. Chem., 78 (1966) 547.
- 8 D. SEYFERTH AND M. A. WEINER, J. Am. Chem. Soc., 84 (1962) 361.
- 9 D. SEYFERTH AND F. M. ARMBRECHT, JR., J. Am. Chem. Soc., 89 (1967) 2790.

Received August 24th, 1967

J. Organometal. Chem., 10 (1967) P25-P27